Tourism live streaming: uncovering the effects of responsiveness and knowledge spillover on travelling intentions

Xiaojiang Zheng and Shixuan Fu

Abstract
Purpose – In tourism live streaming (TLS), streamers strive to capture viewers’ attention by responding quickly to viewers’ requests and providing tourism-related knowledge. However, the effectiveness of such practices in the TLS context remains unclear. Accordingly, based on flow theory, this study aims to uncover the effects of responsiveness and knowledge spillover on viewers’ travelling intentions.

Design/methodology/approach – The authors collected 319 valid questionnaires to examine the proposed model. Following, the authors used a partial least squares structural equation modelling approach using SmartPLS 4 to analyse the survey data.

Findings – The authors found that responsiveness could enhance viewers’ flow experience and destination attachment, fostering travelling intentions. The authors further found that knowledge spillover strengthened the relationship between responsiveness and travelling intentions and responsiveness and flow experience.

Originality/value – This study broadens the scope of extant tourism research by juxtaposing the effects of responsiveness and knowledge spillover on viewers’ travelling intentions in the TLS context. Practically, the findings provide valuable insights for streamers to conduct appropriate viewer–streamer interaction strategies by providing instant responses and tourism-related knowledge to viewers.

Keywords Tourism live streaming, Viewer–streamer interaction strategies, Flow theory, Knowledge spillover

Xiaojiang Zheng is based at the Copenhagen Center for Social Data Science, University of Copenhagen, Copenhagen, Denmark. Shixuan Fu is based at the School of Economics and Management, University of Science and Technology Beijing, Beijing, China.

Received 19 April 2023
Revised 6 July 2023
22 August 2023
Accepted 23 August 2023

The authors thank the National Natural Science Foundation of China (Grant no. 72001005, 72025101) for providing funding for part of this research. The authors thank Ruixue Han (from the School of Economics and Management, University of Science and Technology Beijing) and Yunyi Yang (from Interactive Media Arts, New York University Shanghai) for reviewing the manuscript. The authors thank the editors and reviewers for their constructive remarks and suggestions.

DOI 10.1108/TR-04-2023-0244
la retransmisión turística en directo sigue estarclara. Por consiguiente, este estudio, basado en la teoría del flujo, trata de descubrir los efectos de la capacidad de respuesta y la difusión de conocimientos en la intención de viajar de los espectadores.

Diseño/metodología/enfoque: Se recogieron 319 cuestionarios válidos para examinar el modelo propuesto. Seguidamente, se aplicó la técnica de ecuaciones estructurales con mínimos cuadrados parciales (PLS-SEM) mediante el software SmartPLS para analizar los datos de la encuesta.

Resultados: Se concluye que la capacidad de respuesta mejorará la experiencia de flujo de los espectadores y el apego al destino, fomentando su intención de viajar. Además, se comprueba que la difusión de conocimientos fortalece la relación entre (1) la capacidad de respuesta y la intención de viajar y (2) la capacidad de respuesta y la experiencia de flujo.

Originalidad/valor: La presente investigación amplía el enfoque de los estudios existentes en la investigación turística al aproximar los efectos de la capacidad de respuesta y la difusión de conocimientos sobre la intención de viajar de los espectadores en el contexto de retransmisiones turísticas en directo. Desde el punto de vista práctico, los resultados aportan ideas para que los streamers empleen estrategias de interacción apropiadas con los espectadores, proporcionándoles respuestas instantáneas y transmiéndoles conocimientos relacionados con el turismo.

Palabras clave retransmisiones de turismo en directo, estrategias de interacción espectadores-streamers, teoría del flujo, difusión de conocimientos

Tipo de papel Trabajo de investigación

1. Introduction

The burgeoning of live streaming provides tantalising opportunities for the tourism industry (Deng et al., 2022; Lin et al., 2022a; Dwivedi et al., 2022; Buhalis et al., 2019). Distinct from other tourism marketing channels, tourism live streaming (TLS) fosters dynamic interaction between streamers and viewers (Guan et al., 2022; Lin et al., 2022b; Li et al., 2022). Witnessing the advantages of live streaming, such a change in tourism marketing strategies can be explained by tourism practitioners to implement live streaming. For example, Trip.com developed live streaming platforms, attracting more than 200 million viewers by the end of 2020 (Lv et al., 2022), showing the competitiveness of this advanced tourism marketing channel (Ng et al., 2022; Lin et al., 2022a; Shen et al., 2022; Buhalis and Sinarta, 2019).

Despite the prevalent trend of TLS, we noticed the potential challenges encountered by streamers. That is, although spending massive efforts to design live streaming content deliberately, streamers still encounter challenges in fostering dynamic viewer–streamer interactions, in turn, decreasing the authenticity of viewers’ virtual experience and impeding their travelling intentions (Liu et al., 2023, 2022a; Zheng et al., 2023b). Streamers often find it challenging to establish social and emotional connections with viewers in the realm of tourism activities, as viewers are primarily interested in the pleasure and enjoyment derived from such experiences (Shen et al., 2022; Zhang et al., 2021b). Accordingly, we consider that adopting appropriate viewer–streamer interaction strategies could be conducive to attracting viewers’ attention and enhancing dynamic interaction, thereby addressing the challenges faced by streamers (Lin et al., 2022a; Lv et al., 2022; Lyu et al., 2023; Cham et al., 2023). However, current TLS research mainly focused on the platform, streamers and viewers separately, including technological features (Deng et al., 2021; Hua et al., 2023a; Gössling, 2021; Zheng et al., 2023b), streamers’ value-building and sharing intentions (Xie et al., 2022; Li et al., 2022). How viewer–streamer interaction strategies foster viewers’ travelling intentions needs further empirical analysis (Zhang et al., 2022; Liu et al., 2023; Zhang et al., 2021b).

Accordingly, this study focused on responsiveness, which is one of the core interaction strategies identified by Xue et al. (2020). Responsiveness is defined as the ability of marketers to quickly react and respond to the customers’ comments, questions or feedback in real time (Xue et al., 2020; Kang et al., 2021; Zhang et al., 2020, 2023). In live streaming research, distinct from similar concepts such as “interactivity” and “immediacy”, responsiveness emphasises the streamers’ capacity to provide instant responses
Differently, interactivity and immediacy have been considered as the features of TLS platforms that enable viewers to interact with streamers or other viewers synchronously (Zheng et al., 2023b; Kang et al., 2021; Khoi and Le, 2023; Gu et al., 2023; Shi et al., 2022). We also noticed the dual effects of responsiveness on viewers' responses (Li and Peng, 2021; Hua et al., 2023b; Wang et al., 2022a). On the one hand, responsiveness could increase viewers' perceived usefulness and decrease psychological distancing, fostering viewer engagement (Xue et al., 2020; Kang et al., 2021). Scholars also considered providing instant responses as a strategy to increase the authenticity of individuals' virtual experiences (Zheng et al., 2023a; Mishra et al., 2021; Gu et al., 2023). On the other hand, due to the viewers' limited attention, providing instant responses could cause information overload for viewers, impeding them from concentrating on live streaming (Li and Peng, 2021; Yang et al., 2023). Regarding the paradoxical effects of responsiveness, the influencing mechanism and contingent role of responsiveness on viewers' travelling intentions still require further refinement.

Additionally, we noticed that in live streaming, when providing instant responses, streamers would introduce product-related knowledge (e.g. introducing make-up knowledge to present the use of cosmetics) to stimulate viewers' product purchasing intentions (Yang, 2017; Sun et al., 2021; Qiu et al., 2023; Zhang et al., 2023; Zheng et al., 2023a). Accordingly, this study investigated the role of knowledge spillover in TLS. Based on previous TLS research, knowledge spillover is introduced by sharing knowledge, such as historical stories and local customs (Xie et al., 2022; Deng et al., 2022). For example, Deng et al. (2022) stated that to promote tea garden travelling, streamers would depict the knowledge of tea selection and making process. However, Zheng et al. (2023a) found that presenting streamers' expertise and sharing knowledge cannot significantly influence viewers' purchase intentions in live streaming for e-commerce. Accordingly, regarding the contradictory findings from recent studies, there remains a paucity of empirical studies examining the effectiveness of knowledge spillover in the TLS context. Drawing on the limitations of existing literature, we proposed the following research questions:

RQ1. How does responsiveness influence viewers' travelling intentions in tourism live streaming?

RQ2. How does knowledge spillover foster viewers' positive responses in tourism live streaming?

We hence adopted the flow theory to address our research question. According to flow theory, diverse interaction strategies can be adopted to create an immersive environment, in turn, fostering individuals' complete involvement and positive emotions in tourism activities (Xu et al., 2022; Wu et al., 2022; Skavronskaya et al., 2017). Based on flow theory, this study provides valuable contributions to current TLS and tourism marketing research. Firstly, it is one of the first studies to juxtapose the influencing mechanism of responsiveness and knowledge spillover on travelling intentions in the TLS context. Secondly, this study clarifies the interrelationships among responsiveness, flow experience, destination attachment and travelling intentions, expanding the application of flow theory in the TLS context. Thirdly, we identify the moderating effects of knowledge spillover, extending the theoretical boundary of the flow theory. Practically, this study provides several insights for TLS practitioners to conduct effective viewer–streamer interaction strategies.

2. Theoretical background

2.1 Tourism live streaming

TLS is an online live streaming channel where streamers display destinations and promote tourism-related products (Guo et al., 2021; Liu et al., 2023; Zhang et al., 2021b; Xu et al., 2020; Dwivedi et al., 2022). Such practices have the potential to enhance the immersive experience of travellers in the virtual environment (Buhalis et al., 2019; Deng et al., 2021, 2022;
Li et al., 2022; Liu et al., 2023) and reduce travellers’ worries about unfamiliar environments (Buhalís et al., 2019; Buhalís and Sinarta, 2019; Dwivedi et al., 2022). TLS can also assist streamers in coordinating resources to meet the diverse needs of tourists (Go and Kang, 2023; Shen et al., 2022; Buhalís and Sinarta, 2019). Regarding the advantages of TLS, tourism practitioners (e.g. tourism product providers and destination officials) strive to promote the destination through this advanced online tourism marketing channel.

Ample research has investigated TLS from different perspectives. Drawing on the technological attributes of TLS, Buhalís et al. (2019) and Gössling (2021) indicated that the real-time nature of TLS can shorten the psychological distance between streamers and viewers. Liu et al. (2023) and Zheng et al. (2023b) found that the four technological attributes (e.g. interactivity, vividness, authenticity and immediacy) of TLS can effectively foster the value co-creation process between streamers and viewers. From the streamer perspective, Li et al. (2022) identified streamers’ motivations to share travel experiences. Xie et al. (2022) identified fundamental elements to realise streamers’ values in TLS. Moreover, scholars have also focused on the dynamic interaction between streamers and viewers. For example, Zhang et al. (2021b) and Ye et al. (2022) indicated that the interaction between viewers and streamers could enhance viewers’ social presence, increasing viewers’ tourism product purchasing intentions and participating intentions. Deng et al. (2022) and Shen et al. (2022) proposed that enhancing viewer–streamer interaction can effectively present the value of recommended tourism and hospitality products. Despite prior research that has preliminarily investigated the role of viewer–streamer interaction in the TLS context, how streamers foster the interactive process is still in need of further discussion (Zhang et al., 2022; Liu et al., 2023; Zhang et al., 2021b; Lv et al., 2022).

2.2 Flow theory

Flow theory demonstrates a mental state that people feel when they act with total involvement (Skavronskaya et al., 2017; Zhou et al., 2010). According to flow theory, individuals become completely absorbed in certain activities, losing awareness of their surroundings, and even the concept of time and space, reaching a state of “flow” (Gao et al., 2017; Xu et al., 2022). Research showed that individuals who experience flow tend to have higher satisfaction levels and stronger purchasing intentions (Zhou et al., 2010; Hyun et al., 2022; Pelet et al., 2017). Accordingly, understanding individuals’ flow experience would be conducive to improving the effectiveness of online activities (Nah et al., 2011; Zhou et al., 2010).

This study adopted flow theory in the TLS context because this theory concentrates on individuals’ immersive experience and social interaction within virtual environments, resonating with the nature of TLS (Buhalís et al., 2019; Johnson and Buhalís, 2023). Moreover, current research has adopted flow theory to understand individuals’ virtual experience in live streaming (Zheng et al., 2023a; Liao et al., 2023). For example, Li and Peng (2021) revealed that providing entertaining content could generate viewers’ flow experience, increasing viewers’ gift-giving intentions. Kim and Kim (2022) found that appropriate viewer–streamer interaction strategies can generate viewers’ flow experience, motivating viewers’ loyalty and continuous watching intentions. Zheng et al. (2023a) found that social presence can foster viewers’ flow experience, leading to viewers’ impulsive purchases of recommended products. Based on the above reasons, flow theory matches our research context.

3. Hypothesis development

3.1 The effect of responsiveness on travelling intentions

As defined before, responsiveness indicates the streamers’ ability to respond quickly to viewers’ requests and suggestions in live streaming (Guan et al., 2022; Hilvert-Bruce et al., 2018).
Existing studies have confirmed the positive relationships between responsiveness and viewers’ behavioural intentions. For example, prior studies illustrated that responsiveness could decrease viewers’ uncertainty towards the recommended product in live streaming, leading to viewers’ product purchasing intentions (Hua et al., 2023b; Lu and Chen, 2021; Wongkitrungrueng and Assarut, 2020). Concentrating on TLS research, previous studies also highlighted that providing instant responses can eliminate viewers’ alienation to the recommended destination and dispel viewers’ concerns towards tourism products, increasing viewers’ impulsive purchasing intentions (Lv et al., 2022; Yu et al., 2022b) and continuous watching intentions (Liu et al., 2022b) in TLS. The above arguments are formalised in the following hypothesis:

H1. Responsiveness is positively related to travelling intentions in tourism live streaming.

3.2 The effect of responsiveness on flow experience

Prior tourism research revealed that flow experience is considered as the extent to which a viewer has a sense of “being there” in the live streaming environment (Yu et al., 2022a). In live streaming, streamers can instantly respond to viewers by reading viewers’ comments, adjusting live streaming content based on viewers’ comments or answering viewers’ questions (Khoi and Le, 2023; Liao et al., 2023). These approaches can be helpful in encouraging viewers’ participation in live streaming, making viewers feel temporarily detached from reality (Guan et al., 2022; Kang et al., 2021; Sun et al., 2019; Wongkitrungrueng and Assarut, 2020). Moreover, responding to viewers promptly can motivate viewers to spontaneously allocate more attention to streamers, increasing viewers’ flow experience in live streaming (Ye et al., 2022; Zhai and Chen, 2023). Focusing on the TLS context, recent research asserted that providing instant responses can comprehend viewers’ understanding of one destination, fostering viewers’ flow experience in TLS (Yang et al., 2022; Lv et al., 2022). Based on the discussion, we state the following hypotheses:

H2. Responsiveness is positively related to flow experience in tourism live streaming.

3.3 The effect of responsiveness on destination attachment

Destination attachment is defined as travellers’ emotional connection and psychological engagement with a destination (Wang et al., 2020; Abbasi et al., 2022; Barreda et al., 2020). Focusing on previous tourism marketing research, the instant responses provided by tourism marketers not only help travellers to easily and quickly obtain tourism-related information but also shorten travellers’ psychological distance from destinations (Can et al., 2020; Ying et al., 2021; Ram et al., 2016). Drawing on the nature of TLS, providing instant responses can comprehensively present the recommended destinations’ unique identities, creating viewers’ affective attachment to destinations (Yu et al., 2022b; Deng et al., 2021). Therefore, we propose the following hypothesis:

H3. Responsiveness is positively related to destination attachment in TLS.

3.4 The effect of flow experience on destination attachment

We propose that flow experience could increase viewers’ destination attachment in TLS. Previous studies revealed that flow experience directly influences individuals’ positive emotions. The flow experience would provide an intense illusion of being present in the virtual world. Such intense illusion can reduce the psychological distancing between viewers and the virtual environment, raising viewers’ enjoyment and other hedonic outcomes (Nah et al., 2011; Lin et al., 2022b). Previous tourism research uncovered that flow experience would generate viewers’ emotional bonds to destinations and increase the enjoyment of online travelling (Willems et al., 2019; Ying et al., 2021). Moreover, Li and Peng (2021) have confirmed the positive effects of flow experience on viewers’ positive emotional attachment. In such instances, we theorise that:
3.5 The effect of flow experience on travelling intentions

Theoretical and empirical evidence supported the positive and significant relationship between viewers’ flow experience and travelling intentions. Drawing on previous tourism marketing research, Gao et al. (2017) theorised that the flow experience reflects the high quality of viewers’ virtual experience. Ying et al. (2021) and Buhalis et al. (2022) stated that flow experience can stimulate travelling intentions in online tourism activities. Besides, current TLS research argued that fostering viewers’ flow experience would be beneficial in creating viewers’ positive destination images and stimulating viewers’ travelling intentions (Xu et al., 2021; Zhang et al., 2021b; Zheng et al., 2023b; Yadav et al., 2022; Jafar and Ahmad, 2023). Abbasi et al. (2022) demonstrated that with a high level of flow experience, viewers could feel close to the virtual destinations, provoking their intentions to visit the destination in person. Based on the above arguments, we hypothesise that:

H5. Flow experience is positively related to viewers’ travelling intentions in TLS.

3.6 The effect of destination attachment on travelling intentions

Previous tourism research has considered destination attachment a vital indicator of travellers’ positive behavioural intentions (Kim et al., 2018; Wang et al., 2020; Prayag and Ryan, 2012). For example, Prayag and Ryan (2012) stated that travellers’ destination attachment would generate travelling satisfaction. Kim et al. (2018) further confirmed that destination attachment would improve travellers’ destination loyalty. Wang et al. (2020) illustrated that with the enhancement of destination attachment, travellers are more likely to evaluate a destination positively, increasing travelling intentions. Therefore, we hypothesise that:

H6. Destination attachment is positively related to viewers’ travelling intentions in TLS.

3.7 The moderating effects of knowledge spillover

Knowledge spillover is defined as the transference of knowledge and expertise from the owner to other entities (Scarrà and Piccaluga, 2022). In TLS, knowledge spillover highlights that streamers would depict the history, geographic features, folk customs and cultures of destinations based on viewers’ comments and requirements (Xie et al., 2022). Knowledge spillover is derived from individuals’ curiosity about the destinations, accommodating viewers’ desire to obtain new knowledge (Valeri and Baggio, 2022; Stojanovic et al., 2022). Previous studies have proved that knowledge spillover can foster user engagement and facilitate favourable brand advocacy among customers (Sun et al., 2021). Furthermore, knowledge spillover is crucial in tourism marketing (Kim et al., 2018), as consumers would be prone to combine the shared tourism knowledge with their imagination of destinations, fostering their involvement in travelling activities (Pu et al., 2023; Valeri and Baggio, 2022; Gaffar et al., 2022). In TLS, knowledge spillover is helpful in piquing viewers’ curiosity and improving viewers’ perceptions of product benefits (Xie et al., 2022; Deng et al., 2022; Li et al., 2022). Accordingly, we proposed that delivering related knowledge of destinations can boost viewers’ flow experience, destination attachment and travelling intentions under the interactive environment of TLS. In this light, we state the following hypotheses:

H7. Knowledge spillover has a moderating effect on the relationship between responsiveness and travelling intentions.

H8. Knowledge spillover has a moderating effect on the relationship between responsiveness and flow experience.

H9. Knowledge spillover has a moderating effect on the relationship between responsiveness and destination attachment.
3.8 Control variables

To examine the effectiveness of the proposed model, we included four demographic factors as control variables, including age, gender, occupation and monthly disposable income. Based on previous studies, these four demographic factors can influence individuals’ travelling intentions (Filimonau et al., 2022; Wang et al., 2022b). Figure 1 presents the research model of our study.

4. Methodology

4.1 Measurement development

In our questionnaire design, all measurement items were adapted from the prior literature and tailored to the TLS context. Five-point Likert scales ranging from strongly disagree (1) to strongly agree (5) were adopted in this study, and the measurement items were presented in Table 1. As shown in Table 1, the items for responsiveness were adapted from Xue et al. (2020). The items for flow experience came from Chen and Lin (2018) and Hyun et al. (2022). To measure destination attachment, existing studies mainly consider three dimensions of this variable, including place identity, affective attachment and place dependence (Yuksel et al., 2010; Zou et al., 2022a; Wang et al., 2020). We did not include the measurement items of place dependence. Given that place dependence reflects the physical-level attachment that is sustained by the functional value of a place (Yuksel et al., 2010; Wang et al., 2020), TLS viewers can solely experience virtual settings rather than experiencing actual facilities and the environment of destinations. Accordingly, the items for place identity (DA1) and affective attachment (DA2 and DA3) pertaining to destination attachment were adapted from Yuksel et al. (2010) and Wang et al. (2020). Furthermore, the items for knowledge spillover were adapted from Xie et al. (2022). The items for travelling intentions were adapted from Chi et al. (2020) and Skard et al. (2021).

4.2 Data collection

The data was collected from September 2022 to October 2022 in China. This study attempted to recruit participants who have watched TLS. To access the qualified participants, we uploaded our survey questionnaire on the Credamo platform (www.credamo.com/). Credamo is one of China’s largest survey platforms widely adopted in existing tourism research (Cao et al., 2023; Liang et al., 2022). We used the professional

![Proposed research model](image)

Source: Credit by authors
survey data collection service on the Credamo platform to randomly recruit live streaming viewers.

At the beginning of the questionnaire, all subjects were asked to read the informed consent form. The responses to the online survey were voluntary, and their information would remain anonymous. To guarantee the suitability of respondents, we presented a pre-screening question that asked whether the respondents had watched TLS. Only those who reported “yes” to the pre-screening question were qualified to participate in this survey. Moreover, we incorporated test questions (i.e. calculation tasks) into the survey to enhance the data reliability. If respondents failed to answer these test questions correctly, their questionnaires were considered invalid. Finally, a total of 340 responses were collected. Because 21 subjects did not watch TLS, 319 valid responses were used in further analysis.

Table 2 shows the demographic information of responses. The valid respondents comprised 58% females and 42% males. Most respondents were between 18 and 25 years old (64.2%). In terms of occupation and income, more than half of them were students (55.8%), and most had monthly disposable income between 4,000 and 6,000 yuan (37.3%). According to the report proposed by FastData (www.ifastdata.com), in 2021, live streaming users comprised 61.6% females and 39.4% males, and around 60% of users are below 30 years old (FastData, 2021). Therefore, our research samples are representative.

5. Data analysis and results

We adopted SPSS 26 and partial least squares structural equation modelling (PLS-SEM) via SmartPLS 4 to analyse our data. This study adopted PLS-SEM rather than

Table 1: Measurement items

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Item code</th>
<th>Indicators</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsiveness</td>
<td>RES1</td>
<td>The streamers are happy to communicate with me during live streaming</td>
<td>Xue et al. (2020)</td>
</tr>
<tr>
<td></td>
<td>RES2</td>
<td>The streamers can answer my questions and requests in time during live streaming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RES3</td>
<td>The streamers can provide relevant information for my inquiry in time during the live streaming</td>
<td></td>
</tr>
<tr>
<td>Flow experience</td>
<td>FE1</td>
<td>When watching tourism live streaming, I feel that the scenery in the tourism live streaming is real</td>
<td>Chen and Lin (2018) and Hyun et al. (2022)</td>
</tr>
<tr>
<td></td>
<td>FE2</td>
<td>When watching tourism live streaming, I felt as if I could reach out and touch the scenes and objects in the video</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FE3</td>
<td>I was highly immersed while watching tourism live streaming</td>
<td></td>
</tr>
<tr>
<td>Destination attachment</td>
<td>DA1</td>
<td>I identify strongly with the recommended destination in tourism live streaming</td>
<td>Yuksel et al. (2010) and Wang et al. (2020)</td>
</tr>
<tr>
<td></td>
<td>DA2</td>
<td>I am attached to the recommended destination in tourism live streaming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DA3</td>
<td>I feel a strong sense of belonging to the recommended destination in tourism live streaming</td>
<td></td>
</tr>
<tr>
<td>Knowledge spillover</td>
<td>KS1</td>
<td>The streamer introduces the destination knowledge in detail</td>
<td>Xie et al. (2022)</td>
</tr>
<tr>
<td></td>
<td>KS2</td>
<td>The streamer introduces the knowledge related to the recommended destination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KS3</td>
<td>The streamer introduces the relevant knowledge of the recommended destination</td>
<td></td>
</tr>
<tr>
<td>Travelling intentions</td>
<td>TI1</td>
<td>It is very likely that in the near future, I will travel to the destination recommended by tourism live streaming</td>
<td>Skard et al. (2021)</td>
</tr>
<tr>
<td></td>
<td>TI2</td>
<td>I will travel to the destination recommended by tourism live streaming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TI3</td>
<td>I will consider travelling to the destination recommended by tourism live streaming</td>
<td></td>
</tr>
</tbody>
</table>

Source: Credit by authors

covariance-based structural equation modelling (CB-SEM) for the following reasons. Firstly, PLS-SEM has been widely used in current tourism studies with fewer data distribution restrictions than CB-SEM (Hair et al., 2019; Califf et al., 2020). Secondly, PLS-SEM is fitted with investigating a theoretical model from a predicting perspective. Hence, based on the abovementioned reasons, we adopted PLS-SEM rather than CB-SEM.

5.1 Exploratory factor analysis

Prior to testing the relationships among variables, exploratory factor analysis (EFA) was undertaken to reduce potentially superfluous items within each scale. We used SPSS 26 by testing the Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy and the Bartlett’s test of sphericity. The KMO coefficient was 0.934 with a significant \(p < 0.001 \) Bartlett test. Table 3 presents the results of principal axis factoring extraction. As shown in Table 3, the factor loading for each item was higher than 0.5. The EFA results indicated the appropriateness of the items (Howard, 2016).

Table 2
Demographic characteristics of responses \((n = 319)\)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Level</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male</td>
<td>134</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>185</td>
<td>58.0</td>
</tr>
<tr>
<td>Age</td>
<td>18–25</td>
<td>205</td>
<td>64.2</td>
</tr>
<tr>
<td></td>
<td>26–30</td>
<td>60</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>31–40</td>
<td>42</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>>40</td>
<td>12</td>
<td>3.8</td>
</tr>
<tr>
<td>Occupation</td>
<td>Student</td>
<td>178</td>
<td>55.8</td>
</tr>
<tr>
<td></td>
<td>Employee or public official</td>
<td>92</td>
<td>28.8</td>
</tr>
<tr>
<td></td>
<td>Freelancer</td>
<td>19</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>30</td>
<td>9.4</td>
</tr>
<tr>
<td>Monthly disposable income (RMB)</td>
<td>≤4,000</td>
<td>84</td>
<td>26.4</td>
</tr>
<tr>
<td></td>
<td>4,000–6,000</td>
<td>119</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td>6,001–8,000</td>
<td>60</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>8,001–10,000</td>
<td>25</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>>10,000</td>
<td>31</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Source: Credit by authors

Table 3
EFA results

<table>
<thead>
<tr>
<th>Measurement items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES1</td>
<td>0.815</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES2</td>
<td>0.806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RES3</td>
<td>0.792</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS1</td>
<td>0.767</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS2</td>
<td>0.824</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS3</td>
<td>0.830</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE1</td>
<td>0.608</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE2</td>
<td>0.729</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE3</td>
<td>0.738</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA1</td>
<td>0.679</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA2</td>
<td>0.738</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA3</td>
<td>0.725</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T11</td>
<td>0.801</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T12</td>
<td>0.838</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T13</td>
<td>0.796</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Credit by authors
5.2 Common method bias

Since research data were collected from a single survey, there might exist a common method bias (Liang et al., 2007). We evaluated the common method bias in the following steps (Liang et al., 2007). Firstly, we conducted Harmon’s one-factor test on constructs. The results revealed that the largest factor explained 39.79% of the variance, which is lower than 50% of the covariance. Moreover, no signal factors dominated the total variance. Secondly, we linked a common method factor with all single-indicator constructs. The result indicated the significance of all the principal variable loadings ($p < 0.001$). Furthermore, all the common method factor loadings were not significant. Accordingly, common method bias would not be a serious problem for this research.

5.3 Measurement model

The measurement model accesses the reliability and discriminant validity. For the reliability of the constructs, we measured Cronbach’s alpha and composite reliability (CR). As presented in Table 4, the minimum Cronbach’s alpha and CR values were 0.903 and 0.940. If Cronbach’s alpha and CR exceed 0.70, the instrument is internally consistent and reliable (Hair et al., 2019). The convergent validity was measured by average variance extracted (AVE) values. As shown in Table 4, all AVE values were higher than the cut-off value of 0.5, confirming the convergent validity of all constructs (Hair et al., 2019).

Discriminant validity was measured by the following procedures. Firstly, the Fornell–Larcker criterion requires the square root of AVE to be higher than correlations with any other variable (Hair et al., 2019). As shown in Table 5, the square root of AVE was above the correlation with other correlations. Secondly, the criterion of the heterotrait-monotrait ratio of correlations (HTMT) requires that HTMT values be significantly lower than 1. Table 6 presented that all HTMT values were smaller than 1. Therefore, discriminant validity was not an issue in this study.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Descriptive statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Cronbach’s alpha</td>
</tr>
<tr>
<td>RES</td>
<td>0.903</td>
</tr>
<tr>
<td>FE</td>
<td>0.915</td>
</tr>
<tr>
<td>DA</td>
<td>0.918</td>
</tr>
<tr>
<td>KS</td>
<td>0.912</td>
</tr>
<tr>
<td>TI</td>
<td>0.937</td>
</tr>
</tbody>
</table>

Notes: FE = flow experience; KS = knowledge spillover; DA = destination attachment; TI = travelling intentions; RES = responsiveness

Source: Credit by authors

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Discriminant validity based on Fornell–Larcker criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>1</td>
</tr>
<tr>
<td>FE</td>
<td>0.967</td>
</tr>
<tr>
<td>KS</td>
<td>0.709</td>
</tr>
<tr>
<td>DA</td>
<td>0.798</td>
</tr>
<tr>
<td>TI</td>
<td>0.738</td>
</tr>
<tr>
<td>RES</td>
<td>0.650</td>
</tr>
</tbody>
</table>

Note: The square root of AVE in the diagonal

Source: Credit by authors
5.4 Structural model

We adopted SmartPLS 4 on 5,000 bootstrapping samples to assess the significance of structural model paths. Overall, we revealed R^2 values of the structural model. The research model explained 59.5% of the variance in flow experience, 67.1% of the variance in destination attachment and 64.8% of the variance in travelling intentions. Table 7 and Figure 2 present the examining results from H1 to H6. Specifically, responsiveness had the direct effect on travelling intentions ($\beta = 0.392, p < 0.001$). Therefore, H1 was supported. Furthermore, responsiveness positively influenced flow experience ($\beta = 0.305, p < 0.001$) and destination attachment ($\beta = 0.229, p < 0.001$) providing support for H2 and H3. Moreover, flow experience was positively associated with destination attachment ($\beta = 0.600, p < 0.001$) and travelling intentions ($\beta = 0.308, p < 0.001$), supporting H4 and H5. In addition, destination attachment had a positive effect on travelling intentions ($\beta = 0.455, p < 0.01$), supporting H6.

The results of moderating effect examination were presented in Table 7 and Figures 2–4. As presented in Table 7 and Figure 2, knowledge spillover had moderating effects on the relationships between:

- responsiveness and travelling intentions ($\beta = 0.092, p < 0.05$); and
- responsiveness and flow experience ($\beta = 0.116, p < 0.05$), supporting H7 and H8.

Table 6	Discriminant validity based on HTMT				
Variables	1	2	3	4	5
FE					
KS	0.679				
DA	0.704	0.647			
TI	0.743	0.603	0.738		
RES	0.684	0.713	0.664	0.656	

Source: Credit by authors

Table 7	Structural model examination (bootstrapping $n = 5,000$)																										
Parameter path	Beta	t-value	2.5%	97.5%	Results																						
RES \rightarrow TI	0.392***	5.678	0.249	0.516	H1 (Supported)																						
RES \rightarrow FE	0.305***	5.015	0.180	0.412	H2 (Supported)																						
RES \rightarrow DA	0.229***	3.831	0.111	0.343	H3 (Supported)																						
FE \rightarrow DA	0.600***	9.064	0.456	0.713	H4 (Supported)																						
FE \rightarrow TI	0.308***	4.001	0.156	0.461	H5 (Supported)																						
DA \rightarrow TI	0.455***	6.111	0.307	0.589	H6 (Supported)																						
KS \rightarrow TI	0.350***	5.469	0.223	0.468	–																						
KS \rightarrow FE	0.584***	10.021	0.476	0.691	–																						
KS \rightarrow DA	0.065***	0.072	–0.066	0.221	–																						
KS \rightarrow RES \rightarrow TI	0.032*	2.017	0.034	0.211	H7 (Supported)																						
KS \rightarrow RES \rightarrow FE	0.116***	2.361	0.057	0.248	H8 (Supported)																						
KS \rightarrow RES \rightarrow DA	–0.006***	0.276	–0.044	0.042	–																						
AGE \rightarrow TI	–0.041*	1.010	–0.117	0.043	–																						
GEN \rightarrow TI	0.107***	1.360	–0.046	0.253	–																						
OCC \rightarrow TI	0.077***	1.829	–0.008	0.155	–																						
MDI \rightarrow TI	0.055***	1.716	–0.007	0.117	–																						

Notes: ***$p < 0.001$; *$p < 0.05$; **$p > 0.05$; AGE = age; GEN = gender; OCC = occupation; MDI = monthly disposable income
Source: Credit by authors
However, knowledge spillover had insignificant moderating effects between responsiveness and destination attachment ($\beta = -0.006$, $p > 0.05$), rejecting H9. In Figures 3 and 4, we further conducted the slope analysis to present the results of moderating effects. The results revealed that the trend of knowledge spillover was steeper at the high levels than at low levels. In Figure 3, at high levels of knowledge spillover, travelling intentions increased rapidly when responsiveness increased. However, at low levels of knowledge spillover, travelling intention increased slightly as responsiveness increased. In Figure 4, at high levels of knowledge spillover, flow experience increased rapidly when responsiveness increased. However, at low levels of knowledge spillover, flow experience increased slightly as responsiveness increased. Table 7 and Figure 2 also presented that the four control variables, including gender, age, occupation and monthly disposable income, insignificantly influence travelling intentions.

Finally, we adopted the normed fit index (NFI) and standardised root mean square residual (SRMR) provided by SmartPLS to evaluate the model fit. The NFI value was 0.891, and the
closer NFI value is to 1 indicates the better model fit. The SRMR for the saturated model was 0.037, which was under a cut-off threshold of 0.08. Thus, the model fit assessment results supported a good model fit (Benitez et al., 2023; Fu et al., 2023).

6. Conclusions and implications

6.1 Summary of findings

Our main findings are as follows. Firstly, we confirmed the positive and direct effects of responsiveness on viewers’ travelling intentions in TLS. This result is consistent with previous live streaming research (Xie et al., 2022; Kang et al., 2021), which asserted the vital role of providing instant responses to viewers in live streaming. Besides, this finding resonates with existing TLS research about the positive relationship between responsiveness and viewers’ behavioural intentions such as impulsive purchasing of tourism products (Lv et al., 2022; Yu et al., 2022b) and continuous watching of TLS (Liu et al., 2022b).

Secondly, this study also identified the influencing mechanism of responsiveness on viewers’ travelling intentions. Our empirical results suggested that responsiveness could improve viewers’ flow experience and destination attachment. This result resonates with previous tourism marketing research (Zhang et al., 2018; Can et al., 2020; Kim and So, 2022; Gao et al., 2017; Zheng et al., 2023a), indicating the significant role of responsiveness in fostering travellers’ flow experience and destination attachment in online tourism activities. However, this result is inconsistent with the finding of Li and Peng (2021), highlighting the insignificant relationship between responsiveness and flow experience in electronic commerce live streaming. The inconsistency between Li and Peng (2021) and this study can be attributed to the specific nature of the TLS context, wherein streamers are required to fully showcase the unique features of the recommended destinations to viewers (Deng et al., 2022; Hua et al., 2023a; Huertas, 2018). Besides, we revealed that flow experience and destination attachment can enhance viewers’ travelling intentions. These findings are consistent with previous research, which identified the vital role of travellers’ flow experience and destination attachment in TLS (Zhang et al., 2021b; Abbasi et al., 2022; Liu et al., 2023; Xu et al., 2021), virtual reality tourism (Skard et al., 2021; Alyahya and McLean, 2022; Cham et al., 2023) and

![Figure 4](image-url)
virtual tourism communities (Barreda et al., 2020; Xue et al., 2021; Jafar and Ahmad, 2023). Moreover, this study also revealed the significant relationship between flow experience and destination attachment. This finding fits with previous flow theory research (Zhang et al., 2021a; Kim et al., 2018; Li et al., 2023a).

Thirdly, we further asserted that the relationship of responsiveness on viewers’ flow experience and travelling intentions is strengthened by knowledge spillover. Specifically, with the increase of responsiveness, the high level of knowledge spillover will foster viewers’ flow experience and travelling intention. This suggests that when streamers frequently respond to viewers by sharing tourism knowledge, it would be more likely to ignite viewers’ interest and curiosity, increasing viewers’ desire to immerse deeply and travelling intentions in TLS. This finding is consistent with previous tourism marketing research highlighting the significant role of sharing destination-related knowledge (Eletxigerra et al., 2021; Xie et al., 2022; Deng et al., 2022).

6.2 Theoretical implications

Our study provided important implications on current literature in the following aspects. Firstly, this study contributes to current TLS research by clarifying the influencing mechanism of responsiveness on travelling intentions. Existing research has examined the antecedents influencing individuals’ behavioural tendencies in TLS. For example, Zheng et al. (2023b) and Liu et al. (2023) indicated that interactivity, vividness, authenticity and immediacy can foster individuals’ travelling intentions. Distinct from existing TLS research, this study focused on the effects of viewer–streamer interaction strategies (i.e. responsiveness) on viewers’ travelling intentions. Although existing live streaming studies have investigated the effects of responsiveness on participating intentions (Ye et al., 2022; Li et al., 2022), product purchasing (Xue et al., 2020; Shen et al., 2022), there remains a paucity of studies examine the effectiveness of responsiveness in the TLS context. This study illustrated that responsiveness could enhance viewers’ flow experience, destination attachment and viewers’ travelling intentions. Accordingly, we provide insights into the design of viewer–streamer interaction strategies to guide tourism marketing and TLS research.

Secondly, this study contributes to flow theory by identifying the antecedents and outcomes of individuals’ flow experiences in the TLS context. Existing tourism studies have adopted flow theory to investigate the antecedents of individuals’ flow experience and predict individuals’ behavioural intentions in diverse contexts, such as online travel communities (An et al., 2021; deMatos et al., 2021). Drawing on prior live streaming research, Chen and Lin (2018) and Liu et al. (2022c) have adopted flow theory to predict viewers’ product purchasing intentions in live streaming. Differently, this study is one of the first attempts to contextualise flow theory in the TLS field. Accordingly, we confirm responsiveness as an antecedent of viewers’ flow experience and further predict viewers’ destination attachment and travelling intentions. Based on our discussion, we expand the application of flow theory in the tourism context.

Thirdly, this study broadens the scope of current TLS and flow theory research by clarifying the moderating effects of knowledge spillover in fostering flow experience and travelling intentions under a high level of responsiveness environment. According to TLS research, Xie et al. (2022) and Deng et al. (2022) preliminarily considered the role of existing studies in enhancing streamers’ values and promoting destinations. We further highlight that providing creative tourism knowledge could be helpful in luring viewers to fully immerse in live streaming and generating travelling intentions. Furthermore, by confirming knowledge spillover as the moderator, we deepen the understanding of the theoretical boundary of flow theory. In this light, we strengthen the model built on flow theory and comprehend the role of knowledge spillover in the TLS context.
6.3 Practical implications

Our findings provide several practical insights from the following aspects. Firstly, for tourism practitioners who intend to seize TLS opportunities, our study indicates that providing instant responses and relevant knowledge are conducive to enhancing viewers’ flow experience and destination attachment, in turn, generating travelling intentions. As for enhancing responsiveness, streamers can adjust the live streaming content based on viewers’ requirements and offer personalised travel guides to viewers (Yan et al., 2023; Deng et al., 2021; Zhang et al., 2021b; Yadav et al., 2022). For example, when introducing the ancient Chinese town, streamers can focus on viewers’ requirements from the bullet screen to recommend local handicrafts, unique delicacies and popular photo spots. To foster knowledge spillover, streamers could depict tourism-related knowledge such as the historical stories and cultural backgrounds of the recommended destination. For example, when introducing museum travelling, steamers could narrate the stories behind representative artworks in museums or sharing intriguing local rumours (Zou et al., 2022b). These practices would effectively improve viewers’ flow experience and destination attachment, enhancing viewers’ travelling intentions (Yadav et al., 2022; Shi et al., 2022).

Secondly, our findings provide several implications to TLS platforms. According to our research findings, platforms could assist streamers in providing instant responses and tourism-related knowledge to viewers. Platform operators can establish a Question and Answer session to collect viewer feedback and understand their needs, consolidating similar comments to assist streamers in addressing viewer demands (Guan et al., 2022; Chi et al., 2020). Moreover, to assist streamers in providing tourism-related knowledge, providing comprehensive data analysis services would be conducive in understanding viewers’ demands. These initiatives would be conducive to creating a more immersive TLS atmosphere and generating viewers’ destination attachment.

6.4 Limitations and future research

There exist several limitations of this research. Firstly, this study preliminarily juxtaposed responsiveness and knowledge spillover in TLS. However, given that there exist other types of viewe–streamer interaction strategies in TLS, such as providing personalised content to viewers (Guo et al., 2021), future studies could further investigate the effects of distinct interaction strategies on viewers’ other behavioural tendencies (e.g. giving virtual gifts to streamers). Secondly, we did not integrate place dependence into measuring destination attachment. Accordingly, future studies can further discuss the role of place dependence in the context of TLS. Thirdly, this study only focused on TLS in the Chinese context. Given that TLS platforms in different countries and regions have different function designs, future studies could further compare cultural contexts to validate our research findings.

References

Further reading

About the authors
Xiaojiang Zheng is a master student from University of Copenhagen, and majoring in Social Data Science. His publications have appeared in journals such as International Journal of Hospitality Management, Journal of Retailing and Consumer Services.

Dr Shixuan Fu is an associate professor in the School of Economics and Management, University of Science and Technology Beijing, Beijing, China. Her interests focus on user behaviors in online community, sharing economy and technology usage. Her publications have appeared in journals such as Journal of Management Information Systems, Tourism Management, Internet Research, International Journal of Hospitality Management, Information Technology and People, amongst others. Shixuan Fu is the corresponding author and can be contacted at: fushixuan@ustb.edu.cn

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com